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Feynman’s vision

“What kind of computer are we going
to use to simulate physics?”

“If you want to make a simulation of nature, you’d
better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.”

‘Simulating Physics with Computers’ 1981
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How well can a quantum computer simulate physics?

‘Dynamics Questions’:

Input: Current state of the system.
What is the state of the system 10 seconds later?

‘Statics Questions’:

Input: Description of the energy landscape.
In what state are we likely to find the system?

? ? ? ?
?

? ?
?
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Quantum Computers and Monte Carlo

Lov Grover

“Quantum mechanical systems can be in a
superposition of states and simultaneously
examine multiple possibilities.”
‘A fast quantum mechanical algorithm for database search’ 1996

Say an event happens with probability p.

Making the event happen:

classical ∼ 1

p
quantum ∼ 1

√
p

Estimating p to accuracy ε:

classical ∼ 1

ε2
quantum ∼ 1

ε

Brassard, Høyer, Mosca, Tapp (BHMT) 1998
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Outline

1 An introduction to quantum computing and Grover’s algorithm

2 Simplified quantum Monte Carlo estimation
Aaronson, Rall arXiv:1908.10846, SOSA ’20 24-32

3 An introduction to block encodings

4 Quantum algorithms for estimating physical quantities
Rall, arXiv:2004.06832, Phys. Rev. A 102, 022408

5 A quantum algorithm for measuring in the energy eigenbasis
Rall, arXiv:2103.09717, Quantum 5 556

In the dissertation but not in the defense:
Efficiently simulating certain quantum circuits using classical Monte Carlo
Rall, Liang, Cook, Kretschmer, arXiv:1901.09070, Phys. Rev. A 99, 062337
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Quantum Circuits

C := |0〉
(

the column vector

[
1
0

])

or U (a unitary matrix)

or C · C (matrix multiplication)

or C ⊗ C (tensor product)

or C † (adjoint / conjugate transpose).
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The power of quantum circuits

|+〉 :=
1√
2

[
1 1
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]
· |0〉 =
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The power of quantum circuits

General Monte Carlo situation: An event happens with probability p.

Useful example: N possibilities, K considered ‘good’.
A random possibility is good with probability p = K/N.

Superposition of 2n many possibilities using |+〉⊗n = |+〉 ⊗ |+〉 ⊗ |+〉 ....

“Try all possibilities at once?”

Not quite so simple.

“The only difference between a probabilistic classical world
and the equations of the quantum world is that

somehow or other it appears as if the probabilities would have to go negative.”
Feynman 1981
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Grover’s search and negative probability

|Ψ〉 := |+〉⊗n ∼ superposition over all possibilities → RΨ := reflection about Ψ

Π := projection matrix onto good possibilities → RΠ := reflection about Π
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Grover’s search and negative probability

|Ψ〉 := |+〉⊗n ∼ superposition over all possibilities → RΨ := reflection about Ψ

Π := projection matrix onto good possibilities → RΠ := reflection about Π

p := |Π |Ψ〉 |2 = sin2(θ)

|Ψ〉 = sin(θ) |good〉+ cos(θ) |bad〉
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Grover’s search and negative probability

|Ψ〉 := |+〉⊗n ∼ superposition over all possibilities → RΨ := reflection about Ψ

Π := projection matrix onto good possibilities → RΠ := reflection about Π

RΨ · RΠ · |Ψ〉 = sin(3θ) |good〉+ cos(3θ) |bad〉

(RΨ · RΠ)k · |Ψ〉 = sin((2k + 1)θ) |good〉+ cos((2k + 1)θ) |bad〉
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Grover’s search and negative probability

|Ψ〉 := |+〉⊗n ∼ superposition over all possibilities → RΨ := reflection about Ψ

Π := projection matrix onto good possibilities → RΠ := reflection about Π

Grover coin

For every odd r , we can toss a coin:

Pr[coin comes up heads] = sin2(rθ)
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Grover’s Algorithm and Monte Carlo Estimation

Grover coin

For every odd r , we can toss a coin:

Pr[coin comes up heads] = sin2(rθ)

An event happens with probability p.

θ = arcsin(
√

1/p)

Useful example: N possibilities, K considered ‘good’. Random guess: p = K/N.

Search: Make the event happen / find a good possibility.

r ∼ 1/θ ∼
√

1/p

sin2(rθ) ∼ const
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An event happens with probability p.

θ = arcsin(
√

1/p)

Useful example: N possibilities, K considered ‘good’. Random guess: p = K/N.

Counting: Estimate p or K to accuracy ε.

Many estimation tasks reducible to probability estimation. Montanaro arXiv:1504.06987

Statistical physics: canonical ensemble, grand canonical ensemble, etc.
Machine learning: stochastic integration, Bayesian networks
Finance: stochastic option pricing, financial derivatives
In this talk: quantum observables, density of states

Traditional method: BHMT 1998

Very complicated: uses quantum Fourier transform, conditional rotations, median amplification.
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Quantum Approximate Counting, Simplified Aaronson, SOSA ’20 24-32

Grover coin

For every odd r , we can toss a coin:

Pr[coin comes up heads] = sin2(rθ)

Estimating p is like estimating θ. Keep track of θmin, θmax such that θ ∈ [θmin, θmax].

Start with [θmin, θmax] = [0, π/2] and iteratively improve.

Pick r ∼ 1/(θmax − θmin) so that:

rθmin ≈ πk rθmax ≈ πk +
π

2
sin2(rθmin) ≈ 0 sin2(rθmax) ≈ 1

Toss r -coin very many times to test if:

sin2(rθ) ≤ 1

3
or sin2(rθ) ≥ 2

3
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3 An introduction to block encodings
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How to study physics on a quantum computer?

Want to evaluate quantities like:

Expectations of observables:
〈O〉 = Tr(ρO)

〈O1(t1)O2(t2)...On(tn)〉

Density of states:

ρ(E ) =
1

D

∑
i

δ(Ei − E )

→ Lots of non-unitary matrices: cannot write into a quantum circuit.
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Block Encodings

Main idea: encode M into top left corner of a unitary matrix.

UM =

[
M ·
· ·

]
(〈0| ⊗ I )UM(|0〉 ⊗ I ) = M

Block encoding circuits: Gilyen, Low, Su, Wiebe, arXiv:1806.01838, STOC ’19

B := M (any matrix) New!

or B + B (matrix addition) New!

or B · B (matrix multiplication)

or B ⊗ B (tensor product)

or B† (adjoint / conjugate transpose)

or p(B) (transform eigenvalues by a polynomial p). New!

Linear combinations of Paulis → block encodings of any Hamiltonian or observable
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Estimating observables: Tr(ρO) Rall, arXiv:2004.06832, Phys. Rev. A 102, 022408

Given a block encoding UO of O, and |φ〉, a purification of ρ

|Ψ〉 :=
|0〉

UO

|φ〉
{ Π :=

|0〉 〈0|

|φ〉 〈φ|

“Approximate counting simplified” gives an estimate of:

p := |Π |Ψ〉 |2 = | 〈0| 〈φ| (UO ⊗ I ) |0〉 |φ〉 |2

= | 〈φ| (O ⊗ I ) |φ〉 |2

= |Tr [|φ〉 〈φ| (O ⊗ I )] |2 = |Tr (ρO) |2
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n-time correlation functions

An observable in Heisenberg picture:

Oi (ti ) = e iHtiOie
−iHti

To estimate 〈O1(t1)O2(t2)...On(tn)〉, construct block encoding of:

Γ =
∏
i

Oi (ti ) = e iHt1O1e
iH(t2−t1)O2e

iH(t3−t2)...One
iHtn

Γ is not Hermitian, so expectation is complex.

Real part: Tr

(
ρ

Γ + Γ†

2

)
Imaginary part: Tr

(
ρ

Γ− Γ†

2i

)
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Density of states

Density of states:

ρ(E ) =
1

D

∑
i

δ(Ei − E )

Histogram bin: ∫ E2

E1

ρ(E )dE

Map to observable estimation:∫ E2

E1

ρ(E )dE = Tr

(
I

D
· w(H)

)
w(E ) := polynomial indicating E1 ≤ E ≤ E2

Energy   E

ρ
(E
)

Energy   E

ρ
(E
)
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Outline

1 An introduction to quantum computing and Grover’s algorithm

2 Simplified quantum Monte Carlo estimation

3 An introduction to block encodings

4 Quantum algorithms for estimating physical quantities

5 A quantum algorithm for measuring in the energy eigenbasis
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Estimating Energy in Superposition

Previous methods estimate the average energy 〈H〉.

What about measuring the Hamiltonian H?

Input:

H =
∑
j

Ej |ψj〉 〈ψj |

Output: a quantum circuit that transforms∑
j

αj |ψj〉 → |ψj〉 |Ej〉 with probability |αj |2

|Ej〉 := n-bit estimate of Ej

‘Textbook’ method: Phase Estimation Nielsen, Chuang

Uses Hamiltonian simulation, quantum Fourier transform,
median amplification, and a quantum sorting network.
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Block Measurement Lemma

Say we have a block encoding of a projector Π.
Say |ψ〉 splits into:

|ψ〉 = α |good〉+ β |bad〉

Then, we can measure the projector Π:

|ψ〉 → |good〉 |1〉 or |bad〉 |0〉

Goal: n-bit approximation of Ej

Make a projector for each bit k ∈ {1, ..., n}:

Πk =
∑
j

k ’th bit of Ej · |ψj〉 〈ψj |

≈
∑
j

pk(Ej) · |ψj〉 〈ψj | = pk(H)
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Performance and Applications

Advantages over traditional energy estimation:

∼ 20x constant factor speedup

Ancilla cost: O(n), independent of accuracy

Applications:

Thermal state preparation: Quantum Metropolis Sampling
Temme et al arXiv:0911.3635 Yung, Guzik arXiv:1011.1468 Lemieux et al arXiv:1910.01659

Non-Destructive Amplitude Estimation: Partition function estimation, Bayesian inference
Harrow, Wei arXiv:1908.10856 Arunachalam et al arXiv:2009.11270
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Takeaways

Quantum computers offer a general purpose speedup for Monte Carlo estimation
Aaronson, Rall arXiv:1908.10846, SOSA ’20 24-32

Next steps: non-destructive estimation, hybrid quantum-classical estimation

Block encodings make it easy to estimate quantities from physics on a quantum computer
Rall, arXiv:2004.06832, Phys. Rev. A 102, 022408

Next steps: enhanced block encodings with quantum channels, and multivariate polynomials

Energy measurement is simpler and more efficient using eigenvalue transformation
Rall, arXiv:2103.09717, Quantum 5 556

Next steps: modernize the quantum algorithms literature with eigenvalue transformation
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Thank you for your attention!

Special thanks to:

Scott Aaronson,
All of my family, especially Stella Wang and Anna Maria Rall,

Eric Price, Elena Caceres, Allan MacDonald,
Elaine Li, Brian La Cour, Antia Lamas-Linares

Corey Ostrove, Bryce Fuller, Daniel Liang, William Kretschmer,
Andrew Tan, Adrian Trejo Nuñes, Justin Yirka, Yosi Atia, Chunhao Wang,

and many others.

I was supported by Dr. Aaronson’s Vannevar Bush Faculty Fellowship.

Contact me at patrickjrall@gmail.com
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